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1 Lebesgue Measure

Start of chapter is review from MATH 356.

1.1 Outer and Inner Approximations of Measurable Sets

Theorem 1.1. Let A ⊆R. Then, the following are equivalent:

1. A is measurable

2. ∀ε> 0 : ∃Oε ⊆R open such that A ⊆Oε and m∗(Oε− A) < ε ⇐⇒ m∗(Oε)−m(A) < ε

3. ∃(Om)m∈N open such that G =⋂
m∈NOm , A ⊆G and m∗(G − A) = 0

• Such a set (countable intersection of open sets) is called a Gδ set.

4. ∀ε> 0 : ∃Fε ⊆R closed such that Fε ⊆ A and m∗(A−Fε) < ε.

5. ∃(Fm)m∈N closed such that F =⋃
m∈NFm , F ⊆ A and m∗(A−F ) = 0

• Such a set (countable union of clsoed sets) is called a Fσ set.

Proof. As always, proof by transitivity

1. =⇒ 2. Assume A is measurable.

In the finite case m(A) <∞, we have that ∃(Ik,ε)k∈N open and bounded such that
∑∞

k=1 l (Ik,ε) <
m(A)+ε and A ⊆⋃∞

k=1 Ik,ε. Take Oε to be the union of these intervals (also open as the union of
open sets). Then by subadditivity:

m∗(Oε) ≤
∞∑

k=1
m∗(Ik,ε) ≤ m(A)+ε

Since m(A) <∞, it follows by excision that m(Oε− A) = m(Oε)−m(A) < ε.
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For the case where A has infinite measure, break A into Ak = A∩ [k,k +1) for all integers. Using
the finite case above, we can find an open set such that m∗(Ok,ε− AK ) < ε

5 2−|k|. Let Oε be the
union of these sets. Then

Oε− A = ⋃
k∈Z

Ok,ε−
⋃

k∈Z
Ak ⊆ ⋃

k∈Z
Oε,k − Ak

By monotonicity and subadditivity, we have that:

m∗(Oε− A) ≤ ∑
k∈Z

m∗(Oε,k − Ak ) < 4ε+ε

Where the last ε comes from k = 0

2. =⇒ 3. Let G =⋂∞
i=1 O 1

n
where O 1

n
is open such that A is contained in it and m∗(O 1

n
− A) < 1

n .

Then, we have that A ⊆ G and m∗(G − A) ≤ m∗(O 1
n
− A) < 1

n by monotonicity and the whole

thing goes to 0 as n →∞.

3 =⇒ 1. A = G −ν where ν = G − A and has measure 0 while G is Gδ. Both Gδ sets and sets of
outer measure 0 are measurable, A is also measurable.

To show 4. and 5., notice that if A is measurable, so is its complement.

4. ∀ε > 0 : ∃Oε that satisfies 2. Then, considering the complement of Oε gives us the required
set.

5. Taking the complement of the family of open sets that form the Gδ set in 3. gives us the sets
whose intersection fits the required properties.

We now have 3 questions:

1. Do there exists non-measurable sets?

2. Do there exist uncountable sets of measure 0?

3. Can all measurable sets be obtained as some combination of complements and countable
unions of open sets.

1.2 The existence of non-measurable sets

While we cannot explicitly construct a non-measurable set, we can prove its existence.

Def. Axiom of choice Let Ω be a collection of non-empty sets. Then ∃ f : Ω→ ∪s∈Ω such that
∀s ∈Ω : f (s) ∈ S. Essentially, from an arbitrary collection of sets, we can always pick an element
from each set.

Theorem 1.2. ∀A ⊆R, if m∗(A) > 0, then there is some B ⊆ A that is non-measurable.
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Proof. We begin by reducing the problem to bounded subsets of A

If it is unbounded, we can write:
A =∪k∈ZAk

where Ak = A∩ [k,k +1)

Then, by subadditivity, we have that:

0 < m∗(A) ≤ ∑
k∈Z

m∗(AK ) =⇒ ∃k0 ∈Zwith m∗Ak0 > 0

Then, taking that Ak0 , we can define:

∀x ∈ Ak0 ,Sx = (x +Q)∩ Ak0

To be an uncountable collection of countable sets. WithΩ as the collection of all the Sx , apply-
ing the axiom of choice, we can define a function f that picks one element from each of the Sx .
We seek to show that:

Ak0 ⊆
⋃

q∈Q∩[−1,1]
f (Ω)+q

Where f (Ω) is the set of all chosen points. Let x ∈ Ak0 , f (Sx) ∈ Sx . Then, to show it belongs in
the RHS:

∃qx ∈Q : f (Sx) = x +qx and f (Sx) ∈ Ak0

It follows that x = f (Sx)−qx and |q| = | f (Sx)− x| ≤ 1 since x, f (Sx) ∈ Ak0 ⊆ [k0,k0 +1) and thus
we can conclude that x is in the RHS.

Now, let Sx ,Sx ′ ∈Ω and q, q ′ ∈Q∩ [−1,1] be such that f (Sx)+q = f (Sx ′)+q ′. Then, since f (Sx)
is just x +qx , qx ∈Q, we have that:

x +qx +q = x ′+qx ′ +q ′

x +Q= x ′+Q
Sx = Sx ′

Then it must be that f (Sx) = f (Sx ′) =⇒ q = q ′

Thus, the two sets intersect meaning they must be the same =⇒ the sets f (Ω)+ q must be
disjoint.

Now, assume that f (Ω) is measurable. We also have that
⋃

q∈Q∩[−1,1] f (Ω)+ q must be mea-
surable (as the countable union of translated, measurable sets). By step 3 and additivity and
translation invariance:
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m(
⋃

q∈Q∩[−1,1]
f (Ω)+q) = ∑

q∈Q∩[−1,1]
m( f (Ω))

As the countable sum of some number, it must either be 0 or ∞. However, as a subset of [k0 −
1,k0 +2], the measure of the set must be smaller than 3 and thus it can only be 0.

However, we showed previously that Ak0 is a subset of this union with non-zero measure. Thus,
the union’s measure must be > 0 �. Thus, the set must be non-measurable.

1.3 The Cantor Set

Define the Cantor Set as the set C =⋂∞
k=1 Ck where C1 = [0, 1

3 ]∪ [ 2
3 ,1] and ∀k ≥ 2 :

Ck =
2k⋃

j=1
Ik,J

where ∀ j ∈ {1...,2k−1}, Ik,2 j−1 and Ik,2 j are the first and final third of the interval Ik−1, j .

Theorem 1.3. The Cantor set is closed, uncountable and has outer measure 0.

Proof. It being closed follows directly from it being the intersection of closed sets.

Then, ∀k we have that m∗(C ) ≤ m∗(Ck ) since C ⊆Ck . Then:

m∗(Ck ) =
2k∑

k=1
l (Ik, j ) =

2k∑
k=1

3−k = (
2

3
)k

Which goes to 0 as k →∞. Thus, m∗(C ) is 0 and also measurable.

Finally, to show it is uncountable, assume it is countable and thus has some enumeration (xn)n∈N.
Then, define the following sequence of intervals:

I1 =
{

[0, 1
3 ], if x1 ∈ [ 2

3 ,1],

[ 2
3 ,1], otherwise.

Then, ∀k ≥ 2, we can take Ik to be a sub-interval (one of those from Ck ) of Ik−1 that xk is not in.
By the Nested Interval Property, the intersection of all these intervals cannot be empty. How-
ever, the intersection is a subset of C and thus any point in the intersection must be some xn∗.
Yet, we purposely constructed this sequence of intervals to avoid every element of C , including
xn∗ �.

A modified version of the Cantor set involves removing intervals of length α3−k ,0 <α< 1. This
set can have positive measure.
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1.4 Can all measurable sets be obtained as combinations of complements
and countable unions of open sets?

Def. A σ-algebra is a collection of sets φ such that:

1. R ∈φ
2. ∀C1,C2 ∈φ : C1 \C2 ∈φ
3. ∀(Ck )k∈N ∈φ,

⋃∞
k=1 Ck ∈φ

Proposition 1.4. Any intersection of σ-algebras is a σ-algebra as well.

Def. A Borel set is a set that is in the intersection of all σ-algebras that contain the open sets.

Remark. Proposition: There exists a subset of the Cantor set that is not Borel.

Def. The Cantor-Lebesgue function (Cantor staircase function) is a function φ : [0,1] → [0,1]

φ(x) =



1
2 , if x ∈ ( 1

3 , 2
3 ),

1
4 , if x ∈ ( 1

9 , 2
9 ),

3
4 , if x ∈ ( 7

9 , 8
9 ),

...,
i

2k , if x ∈ Jk,i ,

Where Jk,i is the i-th interval of [0,1]−Ck . We also have that φ(0) = 0 and ∀y ∈C − {0} :

φ(y) = sup{φ(x) : x ∈ [0, y)−C }

This property maintains monotonicity and the set in question is not empty since ( 1
3k , 2

3k ) ⊆
[0, y)−C ] for k large.

Remark. Proposition. φ is increasing and continuous.

Proof. It being increasing follows directly from the definition.

It is trivially continuous on [0,1]−C since it is piecewise constant. Otherwise, let x ∈C .

By construction, we have that ∀k ∈ N : ∃ak ,bk ∈ [0,1] −C ∪ {0,1} such that ak ≤ x ≤ bk and
φ(ak ) =φ(bk )− 1

2k .

If x = 0, take ak = 0,bk = Jk,1, if x = 1 take ak = Jk,2k−1,bk = 1.

φ(1) = 1 since all values ≤ 1 and 2k−1
2k → 1 as k →∞.

Let ε> 0. Then ∃kε such that 0 < e−kε < ε and ∃δε > 0 such that (x −δε, x +δε)∩ [0,1] ⊆ [akε ,bkε].
Then ∀y ∈ (x −δε, x +δε), we have that |φ(y)−φ(x)| <φ(bkε)−φ(akε) = 1

2kε
< ε

Now define ψ(X ) =φ(x)+x. We then have that:

5



• ψ is strictly increasing since ∀x < y :ψ(x) = x +φ(x) < y +φ(y) =ψ(y)
• ψ is continuous since it is the sum of 2 continuous functions
• Bijective (injective from strict monotonicity and surjectivity from the Intermediate Value

Theorem)

From this and A2, we have that ψ−1 is continuous and so ψ sends closed/open subsets of [0,1]
to closed/open subsets of [0,2]. In particular ψ(C ) is closed and thus measurable. Then

m(ψ(C )) = m([0,2]− ([0,2]−ψ(C )))

By excision, and since the second term is just (ψ([0,1]−C )), we get

= m([0,2])−m(ψ([0,1]−C ))

The second term is just

m(ψ((
1

3
,

2

3
)))+ (ψ((

1

9
,

2

9
)))+ ...

= m(
1

2
+ (

1

3
,

2

3
))+m(

1

4
+ (

1

9
,

2

9
))

which is the same as just the measure of the interval by translation invariance. Thus, combining
everything we get:

= 2− 1

3
− 2

9
= 2−

∞∑
k=1

2k−1

3k
= 2− 1

3

∞∑
k=1

2k

3k
= 1

Thus, since m(ψ(C )) > 0,∃E ⊆ψ(C ) that is not measurable. Let D =ψ−1(E) ⊆C =⇒ m∗(D) = 0
so D is measurable.

If D were Borel, ψ(D) = E would be Borel as well (from A2, we have that if ψ−1 is continuous, it
maps Borel sets to Borel sets) and thus measurable, but it is not. Thus, D is not Borel.

2 Lebesgue Measurable Functions

Denote R=R∪ {−∞,∞} and [0,∞] = [0,∞)∪ {∞}

Proposition 2.1. Let A ⊆R be measurable and f : A →R. The following are equivalent:

1. ∀c ∈R : f −1((c,∞]) is measurable.

2. ∀c ∈R : f −1([c,∞]) is measurable.

3. ∀c ∈R : f −1([−∞,c)) is measurable.

4. ∀c ∈R : f −1([−∞,c]) is measurable.

If all are satisfied, we say that f is measurable.

Proof. The transitive proof goes as follows:
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1. =⇒ 2. Follows from f −1([c,∞]) = ⋂∞
n=1 f −1((c − 1

n ,∞]) and measurability is preserved by
countable intersection.

2. =⇒ 3. Follows from f −1([−∞,c)) = A− f −1([c,∞]).

3. =⇒ 4. Follows from f −1([−∞,c]) =⋂∞
n=1 f −1([−∞,c + 1

n )).

4. =⇒ 1. Follows from f −1((c,∞]) = A− f −1([−∞,c])

Remark. Let A ⊆Rmeasurable and f : A →R

1. If f measurable =⇒ ∀B ⊆R Borel, f −1(B) is measurable.

2. In case f is finite valued, ( f (A) ⊆R) then f is measurable iff ∀B ⊆R Borel, f −1(B) is mea-
surable.

Proof. For the first statement: Define φ = {B ⊆ R, f −1(B) is measurable}. We show that it is a
σ-algebra. To do so, it suffices to show that it contains the open sets.

Let O be open. Then ∃((ak ,bk ))k∈N open intervals such that O = ⋃∞
k=1(ak ,bk ) and (ak ,bk ) =

[−∞,bk )∩ (ak ,∞]. It follows that f −1(O) = ⋃∞
k=1 f −1([−∞,bk )∩ (ak ,∞]) so f −1 is measurable

since both are measurable.

2. follows from the fact that f −1((c,∞]) = f −1((c,∞)) if f (A) ⊆R and (c,∞) is Borel.

Proposition 2.2. Let A ⊆Rmeasurable and f : A →R continuous, then f is measurable.

Proof. If f is continuous, its inverse maps open sets to open sets.

In particular f −1((−∞,c)) is an open subset of A =⇒ ∃O′ ⊆ R open such that f −1((−∞,c)) =
O′∩ A. Since O′ and A are measurable, so is f −1((−∞,c)).

Remark. Measurable functions don’t need to be continuous anywhere (ex: characteristc func-
tion of rational numbers).

Remark. There is a D and f measurable (even if f is continuous) such that f −1(D) is not mea-
surable. Simply take D to be the non Borel subset of the Cantor set we constructed. Then, we
have that E =ψ(D) =⇒ f =ψ−1 is continuous and f −1(D) =ψ(D) = E is non-measurable.

Def. Let A ⊆R be measurable and P (x) be a statement depending on x ∈ A. We say that P (x) is
true almost everywhere (AE) in A or for almost every x ∈ A if m({x ∈ A : P (x) is false}) = 0.

Remark. Let (Pn(x))n∈N be a countable collection of statements depending on x ∈ A. Then:

[∀n ∈N,Pn(x) is true a.e.] ⇐⇒ [A.e.,∀n ∈N,Pn(x) is True]

Proof.
m({x ∈ A : [∀n ∈N : Pn(x)] is false})

= m({x ∈ A : ∃n ∈N, [Pn(x) is false]})
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= m(
⋃

n∈N
{x ∈ A : [Pn(x) is false]})

≤
∞∑

n=1
m({x ∈ A : [Pn(x) is false]}) = 0

For the LHS to have measure 0, it must be the case that ∀n ∈ N : m({x ∈ A : [Pn(x) is false]}) =
0

Proposition 2.3. Let f : A →R be measurable (implying that A) is measurable and let g : A →R

be such that f = g a.e. in A. Then g is measurable as well.

Proof. ∀c ∈R, g−1([−∞,c]) = (g−1([−∞,c)∩N )∪g−1([−∞,c))∩(A−N ), where N = {x ∈ A : f (x) 6=
g (x)}.

The first term is measurable as a subset of a set (N ) with measure 0 and the second is measur-
able since f is measurable. Thus, their union g−1([−∞,c)) is also measurable.

Proposition 2.4. Let (An)n∈N be disjoint, measurable sets with A = ⋃
n∈N An . Let ( fn)n∈N, fn :

An →R be measurable. Then, let f = fn on An is also measurable.

Proof. Follows from f −1([−∞,c)) = ⋃
n∈N f −1

n ([−∞,c)) being a countable union of measurable
sets.

Example 2.1. Examples of measurable functions include:

1. Piecewise continuous functions

2. Characteristic functions and simple functions

Def. A simple function is a function f : A → R that takes on finitely many values. We denote
the canonical representation of f as:

f =
N∑

n=1
αnχAn (x)

where An = f −1(αn).

Proposition 2.5. Let A ⊆R be measurable:

1. ∀B ⊆ A measurable, f |B (i.e. the function defined only on B) is measurable.

2. ∀B ⊆ R Borel, f : B → R continuous and g : A → B measurable gives that f ◦ g is measur-
able.

3. For f : A →R, g : A →Rwith both measurable, we have that g + f is measurable.

• We avoid R for the second function to avoid ∞−∞
4. For f , g : A →Rmeasurable, we have that f · g is measurable.
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5. For finitely many measurable functions fn : A → R, we have that both their max and min
are measurable.

Proof. The proof for each statement is as follows:

1. ∀c ∈R : f |−1
B ([−∞,c)) = B ∩ f −1([−∞,c)). Since both B and the inverse are measurable, so

is their intersection.

2. ∀c ∈ R : f −1((−∞,c)) is Borel since f is continuous on Borel sets and (−∞,c) is open.
Thus, g−1( f −1((−∞,c)) is measurable since g is measurable.

3. ∀c ∈R, x ∈ A : ( f + g )(x) < c ⇐⇒ f (x) < c − g (x) ⇐⇒ ∃q ∈Q : f (x) < q < c − g (x).

=⇒ ( f + g )−1([−∞,c)) = ⋃
q∈Q

f −1([−∞, q))∩ g−1([−∞,c −q))

Since both elements of the intersection are measurable and we are taking their countable
union, the whole set is measurable.

4. f · g = 1
2 [( f + g )2 − f 2 − g 2]. Then, since f , g , f + g and taking the square is a continuous

function, we have that f · g is continuous.

5. ∀c ∈Rwe have that;

max( f1... fn)−1([−∞,c)) =
n⋂

k=1
f −1

k ([−∞,c))

and

min( f1... fn)−1([−∞,c)) =
n⋃

k=1
f −1

k ([−∞,c))

Remark. There are f , g measurable such that f ◦ g is not measurable. For example, take D to
be the measurable, non-Borel subset of the Cantor set we constructed with E =ψ(D). We have
that χD and ψ−1() are both measurable.

However (χD ◦Ψ−1)−1(( 1
2 ,∞]) =ψ(χ−1

D (( 1
2 ,∞])) =ψ(D) = E .

Since E is not measurable, neither is the composition of the two functions.

Def. Let ( fn)n∈N, fn : A →R and f : A →R. We say that:

1. ( fn)n∈N converges pointwise to f in B ⊆ A if ∀x ∈ B : limn→∞ fn(x) = f (x)

2. ( fn)n∈N converges uniformly to f in B ⊆ A if | f | <∞ and limn→∞ supB | f − fn | = 0.

Proposition 2.6. Let ( fn)n∈N, fn : A → R be measurable functions that converge pointwise a.e.
in A to f . Then, f is measurable.
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Proof. Define N = {x ∈ A : limn→∞ fn(x) 6= f (x)}. Then, ∀c ∈R:

f −1([−∞,c)) = f −1(([−∞,c))∩N )∪ f −1(([−∞,c))∩ (A−N ))

The former set has measure 0 as a subset of N . As for the latter, ∀x ∈ A−N , f (x) ≤ c:

∀k ∈N : ∃nk ∈N : ∀n ≥ nε : fn(x) ≤ c + 1

k

=⇒ f −1(([−∞,c))∩ (A−N )) =
∞⋂

k=1

∞⋃
nk=1

∞⋂
n=nk

f −1
n ([−∞,c + 1

k
])

Hence, as the countable intersection of the countable union of the countable intersection of
measurable sets, f −1(([−∞,c))∩(A−N )) is measurable as well. Thus, we have that f −1([−∞,c))
is measurable.

Lemma 2.7. Simple Approximation Lemma: Let f : A →R be measurable and bounded (| f | <
M). Then, if ∀ε > 0,∃Φε,Ψε : A → R simple functions with Φε ≤ f ≤Ψε ≤ Φε+ ε, we have that
bothΦε,Ψε→ f uniformly in A.

Proof. Let nε ∈N be such that 2M
nε

< ε. Then, partition the range by letting yk = M( 2k
nε

−1) so that

−M = y0 < .. < ynε = M and yk = yk−1 + 2M
nε

.

Let Ak = f −1([yk−1, yk )) so A is the union of these disjoint sets and Ak = f −1((−∞, yk ))∩ f −1([yk−1,∞)),
meaning that the Ak are measurable.

DefineΦε =∑nε

k=1 yk−1χAk andΨε =∑nε

k=1 ykχAk =Φε+ 2M
nε

< ε.

We then have thatΦε ≤ f ≤Ψε ≤Φε+ε in A since yk−1 ≤ f ≤ yk in Ak for all k.

Theorem 2.8. Simple Approximation Theorem: Let f : A → R with A measurable. Then, f is
measurable iff ∃ simple functions (Φn)n∈N such that:

1. (Φn)n∈N converges pointwise to f in A

2. Φn ≤ | f | in A for all n ∈N
Moreover, if f ≥ 0 in A, we can chooseΦn ≥ 0 withΦn+1 ≥Φn ,∀n ∈N

Proof. We begin by showing that it is the case for f positive, then we extend to general functions.

Case f ≥ 0: Let fn = min( f ,n),∀n ∈N. Then fn is bounded and measurable so the SAL gives us
that ∃Φn simple such thatΦn ≤ fn ≤Φn + 1

n in A.

DefineΦ∗
n = max(Φ1...Φn ,0) so thatΦ∗

n ≥ 0 and is increasing. Moreover,Φ∗
n ≤ fn ≤ f so 2. holds.

Finally ∀x ∈ A :
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• If f (x) ≤∞ then ∀n ≥ f (x), fn(x) = f (x) and so 0 ≤ f (x)−Φ∗
n(x) ≤ 1

n =⇒ limn→∞Φ∗
n(x) =

f (x)
• If f (x) =∞, then ∀n ∈N, fn(x) = n soΦ∗

n > n − 1
n →∞ =⇒ limn→∞Φ∗

n(x) = f (x)

Thus, we have pointwise converge ofΦ∗
n to f .

Case f general: Write f = f+− f− where f+ = max( f ,0) and f− = max(− f ,0).

Then ∃(Φn+,−)n∈N simple functions such that they converge to f+,− and 0 ≤Φn+,− ≤ f+,−. We have
thatΦ=Φ+−Φ− is a simple function as well.

Moreover (Φn,+−Φn,−)n∈N converge pointwise to f+− f− = f and |Φn | ≤Φn,+−Φn,− ≤ f+− f− = f .

The other direction follows directly from simple functions being measurable and the pointwise
limit of measurable functions being measurable as well.

A function is Lebesgue measurable if ∀B ⊆R Borel, f −1(B) is Lebesgue measurable.

A function is Borel measurable if ∀B ⊆R Borel, f −1(B) is Borel.

Theorem 2.9. Egoroff’s Theorem: Let A ⊆ R be measurable and m(A) < ∞. Let ( fn)n∈N be
measurable functions that converge pointwise to f . Then, ∀ε> 0 : ∃Fε ⊆ A closed such that:

1. ( fn)n∈N converge uniformly on Fε

2. m(A−Fε) < εn

Proof. The proof can be broken down into 2 steps:

First, let εn ,δn > 0 for n ∈N. Then ∃An ⊆ A measurable and kn ∈N such that:

1. | fk − f | ≤ δn in An ,∀k ≥ kn

2. m(A− An) < ε

Then, define:

An,k = {x ∈ A : | f j − f | < δn ,∀ j ≥ k} =
∞⋂

j=k
(| f j − f |)−1((−∞,δn))

We have that An,k is measurable since f j , f are measurable and | · | is continuous. Moreover, we
have that

⋃
k∈N An,k = A since fn → f pointwise in A.

With An,k ⊆ An,k+1,∀k, we get limk→∞ m(An,k ) = m(A).

In particular, ∃kn ∈N with m(A − An,kn ) = m(A)−m(An,kn ) < εn (for this step, we need m(A) <
∞).

Thus, for An = Ak,kn we have:
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{
| fk − f | < δn , ∀k ≥ kn ,

m(A− An) < εn

Finally let F =⋂
n∈N An . Then F is measurable as the countable intersection of measurable sets.

Choose δn = 1
n and εn = ε

2n+1

Since F is measurable, ∃F ′ ⊆ F closed such that m(F−F ′) = ε
2 . Then, in F ′, we have that | fn− f | ≤

1
n ,∀n ∈N since F ⊆ An . Thus, the fn converge uniformly in F ′ to f .

m(A−F ′) = m(A−F )+m(F −F ′) = m(
⋃

n∈N
(A− An))+ ε

2
≤ ε

Theorem 2.10. Lusin’s Theorem: Let f : A → R be measurable. Then, ∀ε > 0 : ∃Fε ⊆ A closed
such that:

1. f is continuous on Fε

2. m(A−Fε) < ε

Proof. We begin by considering the case where f is simple and extend the result to general cases

Case f simple: Since the Ak s of the simple functions are measurable, each contains some Fk

closed with m(AK −Fk ) < ε
N . Then, F =⋃N

k=1 Fk is closed as well as a finite union of closed sets
and f is continuous on F since it is constant.

Finally, m(A−F ) ≤∑N
k=1 m(A−Fk ) < ε.

We have proven the case for f simple

For the case of f measurable and m(A) <∞. By the Simple Approximation Theorem, ∃(ψn)n∈N
simple functions such that ψn → f pointwise in A. For each ψn , since they are simple, there is
a closed set Fn ⊆ A such that ψn is continuous on Fn and m(A \ Fn) < ε2−n−1 (by the first case).

If we take F = ⋂
n∈NFn it is closed as well and we have a sequence of continuous functions on

this set. If they converged uniformly, we would have that their limit is continuous as well.

Using Egoroff’s Theorem, ∃F0 ⊆ A closed such that ψn → f uniformly on F0 and m(A \ F0) <
ε
2 . Then, f is continuous on F as the uniform limit of continuous functions and m(A \ F ) ≤∑∞

n=0 m(A \ Fn) < ε

The case of sets with infinite measure holds for Lusin’s Theorem.

12



3 The Lebesgue Integral

3.1 Simple functions on a set of finite measure

Def. Let ψ : A → R be a simple function on A (where the measure of A is finite) and let ψ =∑N
k=1 akχAk be its canonical representation. We define the integral of ψ over A, denoted by

∫
Aψ

or
∫

Aψ(x)d x as the number
∫

Aψ=∑N
k=1 ak m(Ak ).

For every B ⊆ A measurable, we denote
∫

B ψ= ∫
B ψ|B .

Remark. Let ψα,β(x) =α if x ∈Q∩ [a,b] and ψα,β(x) =β if x 6∈Q∩ [a,b] for α,β ∈R, a < b ∈R
Then ψα,β =αχQ∩[a,b]+βχR\Q∩[a,b] and so we have that

∫
[a,b]ψα,β =αm(Q∩[a,b])+βm(R−

Q∩ [a,b]) =β(b −a).

3.2 Measurable and bounded functions on a set of finite measure

Def. Let A be a measurable set with finite measure and f : A →R be a function. We say that f is

(Lebesgue) integrable over A if
∫

A f (lower) = ∫
A f (upper). Where

∫
A

f = sup

{∫
A
φ :φ simple ,φ≤ f on A

}
∫

A
f = inf

{∫
A
φ :φ simple ,φ≥ f on A

}
These sets are non-empty since f is bounded meaning there must be some c > 0 such that
−cχA ≤ f ≤ cχA

We then denote
∫

A f = ∫
A f (x)d x = ∫

A f = ∫
A f and we call

∫
A f the integral of f over A. Once

again, for every B ⊆ A measurable, we denote
∫

B f = ∫
B f |B .

Remark.

−∞<
∫

A
f <∞ since − cm(A) =

∫
A
−cχA ≤

∫
A

f ≤
∫

A
cχA

Proposition 3.1. If f : [a,b] →R is Riemann integrable, then f is Lebesgue integrable.

A ⊆ B

Proof. Remark that {
∑N

i=1 inf(xi−1,xi ) f ∗ (xi , xi−1) : a = x0 < ... < xN = b} ⊂ {
∫

[a,b]φ : φ simple ,φ≤
f } and similarly for the other set with the supremum.

The functions
∫ ∑N

i=1 inf(xi−1,xi ) f χ[xi−1,xi ) are the functions we are integrating (step-functions
which are simple).

Use that the supremum of the smaller set will be smaller than the supremum of the larger set.

Hence,
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∫ R

[a,b]
f ≤

∫ L

[a,b]
f ≤

∫ L

[a,b]
f ≤

∫ R

[a,b]
f

So if the 2 on the outside are equal
∫ R

[a,b] f = ∫ R
[a,b] f and thus Riemann integrable, then the inner

ones are equal as well
∫ L

[a,b] f = ∫ L
[a,b] f .

Theorem 3.2. Let f : A →R be measurable and bounded on A with measure of A finite. Then f
is integrable.

Proof. From the Simple Approximation Lemma. ∃(φn)n∈N of simple functions such that φn ≤
f ≤φn + 1

n ,∀n ∈N. It follows that:

∫
A
φn ≤

∫
A

f ≤
∫

A
f ≤

∫
A
φn + 1

n

Letφn =∑Nn
k=1 ak,nχAk,n be the canonical representation ofφn . Thenφn+ 1

n =∑Nn
k=1(ak,n+ 1

n )χAk,n

is the canonical representation of φn + 1
n and so

∫
A
φ+ 1

n
=

Nn∑
k=1

(ak,n + 1

n
)m(Ak,n) =

Nn∑
k=1

ak,nm(Ak,n)+ 1

n
m(Ak,n) =

∫
A
φn + m(A)

n

It follows that:

0 ≤
∫

A
f −

∫
A

f ≤ m(A)

n
→n→∞ 0

so we have that
∫

A f = ∫
A f

Proposition 3.3. Let f , g : A →Rmeasurable and bounded, m(A) <∞:

1. ∀α,β ∈R :α f +βg is measurable and bounded with
∫

Aα f +βg =α
∫

A f +β∫
A g

2. If f ≤ g on A then
∫

A f ≤ ∫
A g

3. | f | is measurable and bounded and |∫A f | ≤ ∫
A | f |

4. ∀B ⊆ A measurable, f χB is measurable and bounded and
∫

A f χB = ∫
B f

5. ∀A1, A2 ⊆ A measurable and disjoint
∫

A1∪A2
= ∫

A1
f + ∫

A2
f . Moreover, if m(A2) = 0, then∫

A2
f = 0 so

∫
A1∪A2

= ∫
A1

f

14



Lemma 3.4. Independence on the representation: Let n ∈ N, a1...an ∈ R and A1...An ⊆ A be
measurable and disjoint. Then

∫
A

n∑
k=1

akχAk =
n∑

k=1
ak m(Ak )

Proof. If this is the canonical representation, we have nothing to prove. Otherwise, if the union
of the Ak is not A, take a0 = 0 and A−∪n

k=1 Ak so that
∑n

k=1χAk =
∑n

k=0χAk and ∪n
k=1 Ak = A

LetΨ= ∑n
k=0χAk . Let n′ ∈N and a′

1 < ... < a′
n′ be such that they contain all the ak (i.e. they are

equal toΨ(R)).

Let Jk = { j ∈ {0....n} : a j = a′
k } and Ak ′ =⋃

j∈Jk
A j =Ψ−1(a′

k ) so that
⋃n′

k=1 Ak ′ =⋃n′
k=1 =

⋃
j∈Jk

A j =
A

Moreover ∀k1 6= k2, A′
k1
∩ A′

k2
=⋃

j1∈Ak1

⋃
j2∈Ak2

A j1 ∩ A j2 =; since Jk1 ∩ Jk2 =;.

This gives that
∑n

k=1 ak ′χAk′ is the canonincal representation ofΨ. It follows that:

∫
A
Ψ=

n′∑
k=1

ak ′m(Ak ′) =
n′∑

k=1
ak ′

∑
j∈Jk

m(A j ) =
n′∑

k=1

∑
j∈Jk

a j m(A j ) =
n∑

j=0
a j m(A j ) =

n∑
j=1

a j m(A j )

Proof. We first consider the case where f , g are simple functions.

Let f = ∑n
k=1 akχAk and g = ∑n′

k=1 a′
kχA′

k
be their canonical representations. Let Ai , j = Ai ∩ A′

j

and ai , j = ai , a′
i , j = a′

j for all i , j so that:

f =
n∑

i=1

n′∑
j=1

ai , jχAi , j

g =
n∑

i=1

n′∑
j=1

a′
i , jχAi , j

Moreover, the sets Ai , j are disjoint since the sets Ai are disjoint and the sets A′
j are disjoint.

1. ∀α,β ∈R :α f +βg =∑n
i=1

∑n′
j=1(αai , j +βa′

i , j )χAi , j is a simple function and by applying the
Lemma

∫
A
α f +βg =

n∑
i=1

n′∑
j=1

(αai , j +βa′
i , j )m(Ai , j )

=α
n∑

i=1

n′∑
j=1

ai , j m(Ai , j )+β
n∑

i=1

n′∑
j=1

a′
i , j m(Ai , j ) =α

∫
A

f +β
∫

A
g
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2. f ≤ g in A =⇒ ∀i , j : ai , j ≤ a′
i , j in Ai , j =⇒

n∑
i=1

n′∑
j=1

ai , jχAi , j ≤
n∑

i=1

n′∑
j=1

a′
i , jχAi , j

∫
A

f ≤
∫

A
g

3. | f | =∑n
j=1 |a j |χA j is a simple function and from 2. we have that

−| f | ≤ f ≤ | f | =⇒ −
∫

A
| f | ≤

∫
A

f ≤
∫

A
| f | =⇒ |

∫
A

f | ≤
∫

A
| f |

4. ∀B ⊆ A measurable, f χB =∑n
i=1

∑n
j=1 a jχA jχB =∑n

j=1 a jχA j∩B is a simple function.

Moreover f |B =∑n
j=1 a jχA j |B =∑n

j=1 a jχA j∩B .

Thus,
∫

A f χB = ∫
B f .

5. ∀B1,B2 ⊆ A measurable and disjoint,
∫

B1∪B2
f = ∫

A f χB1∪B2 by 4.

=
∫

A

n∑
j=1

a jχA j∩(B1∪B2) =
n∑

j=1
a j m(A j ∩ (B1 ∪B2))

=
n∑

j=1
a j m(A j ∩B1)+a j m(A j ∩B2)

by additivity since B1 ∩B2 =;

=
∫ ∑

a jχA j∩B1 +
∫ ∑

a jχA j∩B2

=
∫

A
f χB1 +

∫
A

f χB2 =
∫

B1

f +
∫

B2

f

If m(B2) = 0 then m(A j ∩B2) = 0 and so
∫

B2
f = 0.

Now we prove the proposition when f , g are bounded measurable but not necessarily simple.

1. ∀α,β ∈R,α f +βg is bounded measurable as well.

∀α ∈R,
∫

A
α f =

∫
A
α f = sup{

∫
A
Φ :Φ simple,Φ≤α f }

There are multiple cases:

• The integral is 0 if α= 0.

16



• Now suppose α> 0. LetΦ=αΦ̃ and consider the set

sup

{∫
A
αΦ̃ : Φ̃ simple, Φ̃≤ f

}
=αsup

{∫
A
Φ̃ : Φ̃ simple, Φ̃≤ f

}
=α

∫
A

f

• For α< 0, consider the set:

inf

{∫
A
αΦ̃ : Φ̃ simple, Φ̃≥ f

}
=α inf

{∫
A
Φ̃ : Φ̃ simple, Φ̃≥ f

}
=α

∫
A

f

In each case:

=α

∫
A

f

We now show the property for summation:

∫
A

( f + g ) =
∫

A
( f + g ) = sup

{∫
A
Φ :Φ simple,Φ≤ f + g on A

}
=

= sup

{∫
A
Φ1 :Φ1 simple,Φ1 ≤ f on A

}
+ sup

{∫
A
Φ2 :Φ2 simple,Φ2 ≤ g on A

}
≥ sup

{∫
A
Φ1 +Φ2 : both simple andΦ1 +Φ2 ≤ f + g on A

}

=
∫

A
f +

∫
A

g =
∫

A
f +

∫
A

g

Similarly, the upper integral of f +g ≤ upper integral of f + the upper integral of g . Com-
bining the two gives us equality.

Combining both arguments gives us the result for both.

2. To show f ≤ g on A, we have that ∀φ simple: φ≤ f =⇒ φ≤ g .

=⇒
∫

A
f =

∫
A

f ≤
∫

A
g =

∫
A

g

3. | f | bounded and measurable as well since f is bounded measurable and x → |x| is con-
tinuous. Then, using 2.

−| f | ≤ f ≤ | f | =⇒ −
∫

A
| f | ≤

∫
A

f ≤
∫

A
| f | =⇒ |

∫
A

f | ≤
∫

A
| f |

4. χB f is bounded and measurable as the product of 2 bounded and measurable functions.

∫
A
χB f =

∫
a
χB f = supS1
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where

S1 =
{∫

A
φ :φ simple and φ≤ f χB on A

}
For φ to belong to S1, we need:

φ=
{
φ≤ f on B

φ≤ 0 on A−B.

Take

S2 =
{∫

B
φ,φ simple and φ≤ f on B ,φ= 0 on A−B

}
Then:

supS1 ≥ supS2, from (S2 ⊆ S1)

Then, we can decompose the integral in 2∫
A
φ=

∫
B
φ+

∫
A−B

φ=
∫

B
φ

Let φ̃=φ|B , then

S3 =
{∫

B
φ̃ simple and φ̃≤ f on B

}
Gives us that S2 = S3 and supS3 =

∫
A f . Putting it all together gives that.

∫
A
χB f ≥

∫
A

f

A similar process yields,
∫

AχB f ≤ ∫
A f so we have that

∫
AχB f = ∫

B f

5. ∀A1, A2 ⊆ A measurable and disjoint

∫
A1∪A2

f =
∫

A
f χA1∪A2 =

∫
A

f (χA1 +χA2 ) =
∫

A
f χA1 +

∫
A

f χA2 =
∫

A1

f +
∫

A2

f

In the case m(A2) = 0, since we have proven
∫

A2
φ= 0 for all simple functions we have that∫

A2
f = ∫

A2
f =⇒ ∫

A2
f = 0 (as the supremum/infimum of set with all 0s will be 0).
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Theorem 3.5. Bounded convergence theorem: Let A ⊆ R measurable with finite measure. Let
( fn)n∈N, fn : A →R be measurable on A such that:

1. ∃M > 0 such that ∀n ∈N : | fn | ≤ M on A

2. ∃ f : A →R such that ∀x ∈ A : limn→∞ fn(x) = f (x) (i.e. converges pointwise).

Then f is bounded measurable and

lim
n→∞

∫
A

fn =
∫

A
f

Proof. f is measurable since it is the pointwise limit of measurable functions fn .

Moreover, it follows from 1. and 2. that | f | ≤ M .

By Egoroff’s theorem, ∀ε> 0 : ∃Fε ⊆ A measurable such that fn → f converges uniformly on Fε
and m(A−Fε) < ε

|
∫

A
fn −

∫
A

f | = |
∫

A
fn − f | ≤

∫
A
| fn − f | =

∫
Fε
| fn − f |+

∫
A−Fε

| fn − f |

≤ sup
Fε

| fn − f |∗
∫

Fε
1+ sup

A−Fε
| fn − f |∗

∫
A−Fε

1

The first term goes to 0 as n →∞.

The second term is m(Fε) < m(A)

The third term is ≤ | fn |+ | f | ≤ 2M

The last term is m(A−Fε) < ε

Thus, together:

lim
n→∞sup |

∫
A

fn −
∫

A
f | ≤ 2Mε

As ε→ 0, we obtain limn→∞ |∫A fn −∫
A f | = 0, i.e. limn→∞

∫
A fn = ∫

A f

Example 3.1. Take fn(x) = (cos(x))n ,∀x ∈ (0,π). Then, ∀x ∈ (0,1) : | fn(x)| ≤ 1, limn→∞ fn(x) = 0.
Thus:

lim
n→∞

∫
(0,π)

fn = 0

Example 3.2. Take fn(x) = nχ(0, 1
n ). Here, the sequence of functions does not satisfy uniform

boundedness but does satisfy pointwise convergence. In fact, limn→∞ fn(x) = 0,∀x ∈ (0,1).

However, ∀n ∈N :
∫

(0,1) fn = 1 6= 0, thus the limit cannot be 0.
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3.3 Case of nonnegative measurable functions

Includes functions that are unbounded and not necessarily on sets of finite measure. To deal
with these functions, we bound the function and limit them to a set of finite measure. Then, we
take the supremum over all these functions to get the integral.

Def. Let A ⊆R be measurable (possibly of infinite measure) and f : A →R+ be measurable. We
call integral of f over A and denote

∫
A f = ∫

A f (x)d x the number:

∫
A

f = sup

{∫
B

h : B ⊆ A,m(B) <∞,h : B →Rmeasurable, bounded and 0 ≤ h ≤ f on B

}

For every B ⊆ A, we denote
∫

B f = ∫
B f |B

If
∫

A f <∞, we say that f is integrable over A.

Example 3.3. ∀B ⊆ A measurable,
∫

AχB = m(B)

• ∀B ′ ⊆ A,m(B ′) < ∞,h : B ′ → R measurable and bounded and 0 ≤ h ≤ χB on B ′, then∫
B ′ h ≤ ∫

B ′ χB = ∫
AχB∩B ′ = m(B ∩B ′) ≤ m(B)

• If B has finite measure, we trivially have the result. Otherwise, ∀n ∈N : m(B ∩ [−n,n]) ≤
m([−n,n]) <∞ and χB∩[−n,n] is bounded measurable:

0 ≤χB∩[−n,n] ≤χB

and ∫
[−n,n]

χB∩[−n,n] = m(B ∩ [−n,n]) → m(B) as n →∞

By continuity of measure. Thus,
∫

AχB = m(B).

Proposition 3.6. Let f , g : A →R+ measurable:

1. ∀α,β≥ 0 :α f +βg is nonnegative and measurable and
∫

Aα f +βg =α
∫

A f +β∫
A g

2. f ≤ g on A =⇒ ∫
A f ≤ ∫

A g

3. ∀B ⊆ A measurable, χB f is nonnegative measurable and
∫

AχB f = ∫
B f

4. ∀A1, A2 ⊆ A disjoint measurable
∫

A1∪A2
f = ∫

A1
f + ∫

A2
f . If moreover m(A2) = 0, then∫

A2
f = 0 and so

∫
A1∪A2

f = ∫
A1

f

Proof. 1. ∀α,β> 0, α f +βg is nonnegative measurable since f and g are nonnegative and
measurable.

∫
A
α f = sup

{∫
B

h : B ⊆ A measurable ,m(B) <∞,h : B →R bd measurable ,0 ≤ h ≤α f on B

}
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This is equivalent to α
∫

B h̃, h̃ = h
α

with 0 ≤ h̃ ≤ f on B

=αsup

{∫
B

f : h̃ ⊆ A measurable ,m(B) <∞, h̃ : B →R bd measurable ,0 ≤ h̃ ≤ f on B

}
=α

∫
A

f

Then, for the sum, we have that:

∫
A

( f +g ) = sup

{∫
B

h : B ⊆ A measurable ,m(B) <∞,h : B →R bd measurable ,0 ≤ h ≤ f + g on B

}

≥ sup

{∫
B

h1 : B ⊆ A measurable ,m(B) <∞,h1 : B →R bd measurable ,0 ≤ h1 ≤ f on B

}

+sup

{∫
B

h2 : B ⊆ A measurable ,m(B) <∞,h2 : B →R bd measurable ,0 ≤ h2 ≤ g on B

}
=

∫
A

f +
∫

A
g

Where the inequality arises from the first set containing the second.

Conversely, let B be measurable , m(B) <∞,h : B → R be bounded measurable such that
0 ≤ h ≤ f + g on B . To show the supremum of these elements is less than the sum of the
integrals, we need to show that each of them is less than the sum of the integrals.

Let h1 = min(h, f ) and h2 = h −h1 so that 0 ≤ h1 ≤ f and 0 ≤ h2 = max(0,h − f ) ≤ g on B
giving us that they are both bounded measurable.

Therefore,
∫

B h1 ≤
∫

A f ,
∫

B h2 ≤
∫

A g and so
∫

B h1 +
∫

B h2 ≤
∫

A f +∫
A g .

By taking the supremum, we have that
∫

A( f + g ) ≤ ∫
A f + ∫

A g which combined with the
other inequality gives us:

∫
A

( f + g ) =
∫

A
f +

∫
A

g

2. f ≤ g on A =⇒ ∀B ⊆ A,h : B →R[h ≤ f =⇒ h ≤ g ]

=⇒
∫

A
f ≤

∫
A

g

Since we are taking the supremum of a larger set.
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3. If f finite everywhere, then ∀B ⊆ A measurable, χB f is nonnegative and measurable as
the product of nonnegative and measurable functions.

∫
A
χB f = sup

{∫
B

h : B ′ ⊆ A mbl ,m(B ′) <∞,h : B ′ →R bd mbl ,0 ≤ h ≤χB f on B ′
}

⇐⇒ 0 ≤ h ≤ f on B ′∩B ,h = 0 on B ′−B

=⇒
∫

B
h =

∫
B∩B ′

h +
∫

B−B ′
h =

∫
B∩B ′

h

Thus, letting h̃ = h|B̃ where B̃ = B ∩B ′, the supremum is equal to:

= sup

{∫
B̃

h̃ : B̃ ⊆ B measurable ,m(B̃) <∞,h : B̃ →R bd measurable ,0 ≤ h̃ ≤ f on B̃

}

4. ∀A1, A2 ⊆ A measurable disjoint, we have that (using 3. and 1.):

∫
A1∪A2

f =
∫

A
f χA1∪A2 =

∫
A

f χA1 + f χA2 =
∫

A
f χA1 +

∫
A

f χA2 =
∫

A1

f +
∫

A2

f

However to use 3., we need that | f | <∞.

Moreover, once again, if m(A2) = 0, we have
∫

B h = 0 for all B ⊆ A2 measurable, m(B) <
∞,h : B →R bd measurable, therefore

∫
A2

f = 0.

Theorem 3.7. Chebyshev’s Inequality: Let f be measurable nonnegative on A ⊆R. Then:

∀λ> 0 : m( f −1([λ,∞])) ≤ 1

λ

∫
A

f

Proof. Define Eλ = f −1([λ,∞]). Then f ≥λ on Eλ and f ≥ 0 on A−Eλ.

Thus, f ≥λχEλ
on A. It follows that

∫
A f ≥λ

∫
AχEλ

=λm(Eλ)

Corollary 3.8. Let f be nonnegative measurable on A. Then f = 0 a.e. in A ⇐⇒ ∫
A f = 0

Proof. Chebyshev’s Inequality gives that ∀n ∈N : m( f −1([ 1
n ,∞])) ≤ n

∫
A f .

Therefore, if
∫

A f = 0, then m( f −1([ 1
n ,∞])) = 0. By continuity, we obtain, m( f −1((0,∞))) =

limn→∞ m( f −1([ 1
n ,∞])) = 0. Hence f = 0 a.e. in A.
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For the other side, assume that f = 0 a.e. in A. Let N = {x ∈ A : f (x) 6= 0}. Then m(N ) = 0 and so∫
N f = 0. On the other hand,

∫
A−N f = ∫

A−N 0 = 0. Therefore:

∫
A

f =
∫

N
f +

∫
A−N

f = 0

Corollary 3.9. Let f be nonnegative measurable on A. If f is integrable over A, then f <∞ a.e.
in A.

Proof. Chebyshev’s Inequality gives that ∀n ∈ N : m( f −1([n,∞])) ≤ 1
n

∫
A f where the RHS goes

to 0 as n →∞.

By continuity, it follows that m( f −1(∞)) = limn→∞ m( f −1([n,∞])) = 0

Lemma 3.10. Fatou’s Lemma: Let ( fn)n∈N be a sequence of measurable nonnegative functions
on A ⊆R. Then, liminfn→∞ fn is measurable nonnegative and:

∫
A

liminf
n→∞ fn ≤ liminf

n→∞

∫
A

fn

In particular, if (
∫

A fn)n∈N is bounded by M <∞, then liminfn→∞ fn is integrable and
∫

A liminf ≤
M .

Proof. Let f = liminfn→∞ fn . Let B ⊆ A measurable with m(B) <∞ and h : B → R be bounded
measurable such that 0 ≤ h ≤ f on B .

Let hn = min(h, infk≥n fk ). Then, hn is measurable, nonnegative, supB hn ≤ supB h < ∞ (uni-
formly bounded), limn→∞ hn(x) = min(h(x), f (x)) = h(x) (pointwise convergence).

Thus, we can apply the Bounded Convergence Theorem and get:

∫
B

h = lim
n→∞

∫
B

hn

Since hn ≤ fn , we have
∫

B hn ≤ ∫
B fn ≤ ∫

A fn (from nonnegativity) and so
∫

B h ≤ liminfn→∞
∫

A fn .

Finally, taking the supremum yields:

∫
A

f ≤ liminf
n→∞

∫
A

fn

Example 3.4. Take fn = nχ(0, 1
n ). The integral is 1 ∀n ∈ N while the LHS would be 0 since∫

A liminfn→∞ fn = ∫
A 0 = 0.
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Theorem 3.11. Monotone Convergence Theorem: Let ( fn)n∈N be a sequence of nonnegative
measurable functions on A ⊆R such that ∀n ∈N : fn ≤ fn+1

Since the sequence is increasing, we have that limn→∞ f (x) exists in [0,∞] for all x ∈ A and
limn→∞

∫
A f exists in [0,∞].

Then, we have that:

∫
A

lim
n→∞ fn = lim

n→∞

∫
A

fn

Proof. By Fatou’s Lemma, we have:

∫
A

lim
n→∞ fn =

∫
A

liminf
n→∞ fn =≤ liminf

∫
A

fn = lim
n→∞

∫
A

fn

Since fn ≤ fn+1∀n ∈N, we have fn ≤ limk→∞ fk . Hence
∫

A fn ≤ ∫
A limk→∞ fk and so

∫
A

lim
n→∞ fn = lim

n→∞

∫
A

fn

Corollary 3.12. Let (un)n∈N be a sequence of nonnegative measurable functions on A ⊆ R.
Then:

∫
A

∞∑
n=1

un =
∞∑

n=1

∫
A

un

Proof. Apply the Monotone Converge theorem to the partial sums
∑N

n=1 un

3.4 Case of possibly sign-changing functions

Def. We say that a measurable function f : A → R is integrable over A if f+ = max( f ,0) and
f− = max(− f ,0) are integrable.

We then denote:

∫
A

f =
∫

A
f+−

∫
A

f−

For every B ⊆ A measurable,
∫

B f = ∫
B f |B .

Proposition 3.13. f is integrable iff | f | is integrable.

Proof. Follows from the fact that | f | = f++ f−

Proposition 3.14. Let f , g be integrable over A ⊆R:
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1. ∀α,β ∈R :α f +βg is integrable
∫

Aα f +βg =α
∫

A f +β∫
A g

2. If f ≤ g on A, then
∫

A f ≤ ∫
A g

3. |∫A f | ≤ ∫
A | f |

4. ∀B ⊆ A measurable, f χB is integrable and
∫

A f χB = ∫
B f

5. ∀A1, A2 ⊆ A measurable disjoint,
∫

A1∪A2
= ∫

A1
f + ∫

A2
f . If moreover m(A2) = 0, then∫

A2
f = 0 and so

∫
A1∪A2

= ∫
A1

f

Proof. Straightforward

Remark. We need to watch out for the following two cases:

• f + g is not well defined in the set N = {x ∈ A : f (x) = −g (x) ∈ {±∞}} but if f and g are
integrable, then | f |, |g | <∞ a.e. in A and so m(N ) = 0. In this case, we still say that f + g
is integrable over A and we denote

∫
A( f + g ) = ∫

A−N ( f + g ).
• Same for f χB :

∫
A f χB = ∫

A−N f χB , N = {x ∈ A : | f (x)| =∞} if f is integrable.

Theorem 3.15. Dominated Convergence Theorem: Let ( fn)n∈N be a sequence of measurable
functions on A ⊆R such that:

1. ∃g integrable over A such that ∀n ∈N : | fn | ≤ g a.e. on A.

2. ∃ f : A → R such that fn → f pointwise a.e. in A.

Then the functions fn and f are integrable and:

∫
A

f = lim
n→∞

∫
A

fn

Proof. Since 1. and 2. are true a.e. in A, there exists A′ ⊆ A such that m(A − A′) = 0 and both
properties hold everywhere on A′.

Since | fn | ≤ g and g is integrable, so is fn ,∀n ∈N. Then, considering both properties on A′, we
have that | f | ≤ g on A′ so f is integrable.

Let g+
n = g + fn and g−

n = g − fn so that both are nonnegative and measurable (as sum/difference
of measurable functions). By Fatou’s Lemma, we have:

∫
A

liminf g±
n ≤ liminf

n→∞

∫
g±

n

Where the LHS is
∫

A g ± f and the RHS is liminfn→∞
∫

A g ±∫
A fn .

Then, by subtracting
∫

A g , we have:

±
∫

A
f ≤ liminf

n→∞ (±
∫

A
fn)
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and so

∫
A
≤ liminf

n→∞

∫
A

fn∫
A

f ≥− liminf
n→∞ −

∫
A

fn = limsup
n→∞

∫
A

fn

which gives

lim
n→∞

∫
A

fn =
∫

A
f

3.5 Applications of the Dominated Convergence Theorem.

Corollary 3.16. Countable additivity of integration: Let f be integrable over A ⊆R and (An)n∈N
be measurable and disjoint subsets of A. Then:

∫
∪∞

n=1 An

f =
∞∑

n=1

∫
An

f

Proof. Let fn = f χ∪n
k=1 Ak

. Then fn is measurable, | fn | ≤ | f | on
⋃∞

k=1 AK and ∀x ∈⋃∞
k=1 AK ,∃nx ∈

N : ∀n ≥ nx , x ∈⋃n
k=1 Ak (take Nx such that x ∈ Anx )) and then fn(x) = f (x) (i.e. we have point-

wise convergence of fn).

Since f is integrable, it follows from the DCT that fn are integrable and∫
∪∞

k=1 Ak

f = lim
n→∞

∫
∪∞

k=1 Ak

fn = lim
n→∞

∫
∪n

k=1

f =
∞∑

k=1

∫
AK

f

Corollary 3.17. Continuity of integration: Let f be integrable over A ⊆R and (An)n∈N be mea-
surable subsets of A. Then:

1. If An ⊆ An+1 : ∀n ∈ N , then
∫⋃∞

k=1
= limn→∞

∫
An

f

2. If An+1 ⊆ An : ∀n ∈ N , then
∫⋂∞

k=1
= limn→∞

∫
An

f

No need to worry about unbounded integral since bounded by finite integral.

Proof. Exercise in assignment 4.

Example 3.5. If f is integrable over R, then limn→∞
∫

[−n,n] f = ∫
R f .
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4 Differentiation and Integration

Problem 1: Given f : [a,b] → R integrable, is the function F (x) = ∫ x
a f (t )d(t ) differentiable and

is F ′(x) = f (x), at least a.e. in [a,b].

Problem 2: Under which conditions on a function F : [a,b] → R does there exists f : [a,b] → R

integrable, such that F (x) = ∫ x
a f (t )d(t )+F (A),∀x ∈ [a,b].

We first consider the case of monotone functions (not necessarily continuous)

Theorem 4.1. Every monotone function f : [a,b] → R is differentiable a.e. in [a,b]. Further-
more, f ′ is integrable over [a,b] and:

• If f is increasing, then
∫ b

a f ′ ≤ f (b)− f (a)

• If f is decreasing, then
∫ b

a f ′ ≥ f (b)− f (a)

Proof. WLOG, we may assume that f is increasing (otherwise consider − f if it is decreasing).

We have ∀x ∈ (a,b), f is not differentiable at x,D f (x) <∞ ⇐⇒ D f (x) < D f (x) (and thus the
limit does not exist) where

• D f (x) = liminft→0,t 6=0
f (x+t )− f (x)

t

• D f (x) = limsupt→0,t 6=0
f (x+t )− f (x)

t

Since f is increasing, we have D f (x) ≥ 0 and D f (x) ≥ 0.

D f (x) < D f (x) ⇐⇒ ∃α,β ∈R : D f (x) <α<β< D f (x) ⇐⇒ ∃α,β ∈Q : D f (x) <α<β< D f (x)

It follows that {
x ∈ [a,b] : D f (x) < D f (x)

}
= ⋃

α,β∈Q,0<α<β
Aα,β

where
Aα,β =

{
x ∈ [a,b] : D f (x) <α<β< D f (x)

}
Therefore, to prove that m({x ∈ [a,b] : D f (x) < D f (x)}) = 0, it suffices to prove that m(Aα,β) =
0,∀α,β ∈Q,0 <α<β.

Fix α,β and let ε > 0. Since Aα,β ⊆ (a,b),m∗(Aα,β) < l ((a,b)) = b − a and so ∃Oε ⊆ (a,b) open
(union of countable open bounded intervals) such that Aα,β ⊆Oε and m∗(Oε) < m∗(Aα,β)+ε.

Step 1: Show that ∃[a1,b1], [a2,b2]...[an ,bn] closed bounded disjoint intervals such that
⋃n

k=1[ak ,bk ] ⊆
Oε,m∗(Aα,β−⋃n

k=1[ak ,bk ]) < ε and ∀k ∈ {1...n} : f (bk )− f (ak )
bk−ak

<α

Let F = {[a′,b′]} ⊂Oε : f (b′)− f (a′)
b′−a′ <α

Remark. ∀x ∈ Aα,β,∀ε> 0, since D f (x) <α,∃I ∈ F such that x ∈ I and l (I ) < ε. A covering F of
Aα,β satisfying the above is called a Vitaliy covering.
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We choose the intervals Ik = [ak ,bk ] by induction so that Ik+1 ∈ Fk and ∀k ∈ N : l (Ik+1) >
1
2 supI∈Fk

l (I ) where Fk = {I ∈ F : I ∩∪k
j=1I j =;}, provided Fk 6= ;.

Case 1: ∃n ∈ N : Fn = ;. In this case, the induction stops. Moreover, since Fn = ;,∀I ∈ F :
I ∪⋃n

k=1 Ik 6= ;. In this case, we will show that Aα,β−⋃n
k=1 Ik =;.

Assume for contradiction that ∃x ∈ Aα,β−⋃n
k=1 Ik . Since

⋃n
k=1 Ik is closed (and thus complement

is open), ∃δx > 0 such that (x−δx , x+δx)∩⋃n
k=1 Ik =;. Moreover, by the Vitali property, we have

that ∃I ⊂ (x −δx , x +δx) such that I ∈ F and so I ∈ Fn . �

Case 2: ∀n ∈N : Fn 6= ;: We will show that m∗(Aα,β−⋃n
k=1 Ik ) < ε for some nε ∈N. Let n ∈N and

x ∈ Aα,β−⋃n
k=1 Ik .

As in the previous case, ∃I ∈ Fn such that x ∈ IX . If IX ∩ IK = ;,∀k > n, then we have that
Ix ∈ Fk ,∀k ∈N and so l (Ik ) > 1

2 l (Ix) which implies l (∪∞
k=n+1Ik ) =∞, contradicts (Ik )k≥n disjoint

included in (a,b) bounded, �.

It follows that, ∃kx > n (take first one) such that Ix ∈ Fkx−1 and Ix ∩ Ikx 6= ;. Let ykx be the
middle point of Ikx . Let zk ∈ Ix ∩ Ikx . We have |x− ykx | ≤ |x−zx |+|zx − ykx < l (Ix)+ 1

2 l (Ikx ). Since
l (Ikx ) > 1

2 l (Ix), it follows that |x − ykx | < 2l (Ikx )+ 1
2 l (Ikx ) = 5

2 l (Ikx ) and so x ∈ [ykx − 5
2 l (Ikx ), ykx +

5
2 l (Ikx )] = I ′kx

with length 5
2 l (Ikx ).

We have proven that Aα,β−⋃n
k=1 Ik ⊆⋃∞

k=n+1 I ′k . It follows that m∗(Aα,β−⋃n
k=1 Ik ) ≤∑∞

k=n+1 l (I ′k ) =
5
∑∞

k=n+1 l (Ik ). Since
∑∞

k=1 Ik = l (
⋃

k=1∞Ik ) ≤ l ((a,b)) <∞, we have that limn→∞
∑∞

k=n+1 l (Ik ) =
0 and so ∃nε ∈N : m∗(Aα,β−⋃n

k=1 Ik ) < ε

Step 2: Show that ∀k ∈ {1...N } : ∃[ak,1,bk,1]...[ak,N ,bk,N ] ⊆ (ak ,bk ) such that m∗(Aα,β∩(ak ,bk )−⋃Nk
j=1[ak, j ,bk, j ]) < ε and ∀ j ∈ {1...Nk } :

f (bk, j )− f (ak, j )
bk, j−ak, j

>β

Same proof as Step 1 with the Vitali covering F = {[a′,b′] ⊂ (ak ,bk ) : f (b′)− f (a′)
b′−a′ >β}

Step 3: Show that m∗(Aα,β) = 0 which completes the proof.

From Steps 1 and 2, we have:

N∑
k=1

( f (bk )− f (ak )) <α
N∑

k=1
(bk −ak )

Since the function is increasing, we have that

N∑
k=1

N∑
k=1

( f (bk, j )− f (ak, j )) <α
N∑

k=1
(bk −ak )

β
N∑

k=1

Nk∑
j=1

(bk, j−ak, j ) <
N∑

k=1

N∑
k=1

( f (bk, j )− f (ak, j )) <
N∑

k=1
f (bk )− f (ak ) <α

N∑
k=1

(bk−ak ) <αm∗(Oε) ≤α(m∗(Aα,β)+ε)

Where the first inequality is from Step 2, the second from f increasing, the third from Step 3,
the fourth since the ak ,bk are disjoint and contained in Oε and the last from the measure of Oε

being ε close.
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Thus, we have that:

m∗(Aα,β) ≤ m∗(Aα,β
⋂ N⋃

k=1
[ak ,bk ])+m∗(Aα,β−

N⋃
k=1

[ak ,bk ])

Since the second term is < ε by Step 1 and using subadditivity:

m∗(Aα,β) ≤
N∑

k=1
m∗(Aα,β∩ [ak ,bk ])+ε

≤
N∑

k=1
(m∗(Aα,β∩ [ak ,bk ]∩∪Nk

j=1[ak, j ,bk, j ])+m∗(Aα,β∩ [ak ,bk ]−∪Nk
j=1[ak, j ,bk, j ]))+ε

The second term is < ε by Step 2.

≤
N∑

k=1
(

Nk∑
j=1

m∗(Aα,β∩ [ak, j ,bk, j ])+ε)+ε

≤
N∑

k=1
(

Nk∑
j=1

(bk, j −ak, j +ε)+ε) < α

β
(m∗(Aα,β)+ε)+Nε+ε

Letting ε→ 0, we obtain that m∗(Aα,β) ≤ α
βm∗(Aα,β) and so m∗(Aα,β) = 0 since α

β < 1

Step 4: Show that f is differentiable a.e. in (a,b) and
∫

[a,b] f ′ ≤ f (b)− f (a).

Let D 1
n

f (x) = f (x+ 1
n )− f (x)

1
n

if x ∈ [a,b − 1
n ] and 0 if x ∈ (b − 1

n ,b].

• D 1
n

f ≥ 0 since f is increasing.

• D 1
n

f ≥ 0 is measurable. Suffices to show that f is measurable. f is measurable as an in-

creasing function since ∀c ∈R : f −1((−∞,c)) is an interval. Indeed ∀y < z ∈ f −1((−∞,c)) :
∀x ∈ (y, z) : f (x) ≤ f (z) < c so x ∈ f −1((−∞,c))

• For a.e. in x ∈ (a,b) : (D 1
n

f (x))n∈N converges to D f (x) = D f (x) = D f (x) ∈ [0,∞]. Follows

from Step 3.

Fatou’s Lemma gives
∫

[a,b] D f ≤ liminfn→∞
∫

[a,b] D 1
n

f . Then:∫
(a,b)

D 1
n
= n(

∫
(a,b− 1

n )
f (x + 1

n
)d x +

∫
(a,b− 1

n )
f (x)d x)

The first term is = ∫
(a+ 1

n ,b) f (x)d x by translation invariance of the measure (left as exercise).

= n(
∫

(b− 1
n ,b)

f (x)d x −
∫

(a,a+ 1
n )

f (x)d x)
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Since f (a) ≤ f (x) ≤ f (b):

≤ n( f (b)−m((b − 1

n
,b))− f (a)m((a, a + 1

n
))) = f (b)− f (a)

So
∫

(a,b) D f ≤ f (b)− f (a). In particular, D f <∞ a.e. and so f ′ exists a.e.

Example 4.1. The Cantor-Lebesgue function φ : [0,1] → [0,1] is increasing but φ′ = 0 a.e. in
[0,1] since it is constant a.e. and so

∫ 1
0 φ

′ = 0 < 1 =φ(1)−φ(0)

4.1 Functions of bounded variation

Def. We say that a function f : [a,b] →R is of bounded variation if T V ( f ) <∞ where:

T V ( f ) = sup

{
N−1∑
k=0

| f (xk+1)− f (xk )|
}

; a = x0 < x1 < ... < xN = b

T V ( f ) is called the total variation of f .

Example 4.2. Some examples of functions of bounded variation:

1. Monotone functions: If f : [a,b] →R is increasing, then for all partitions of [a,b]:

T V ( f ) =
N−1∑
k=0

| f (xk+1)− f (xk )| = f (b)− f (a)

Since other terms cancel. Thus, the T V is finite. Similarly, if f is decreasing, T V ( f ) =
f (a)− f (b).

2. Lipschitz functions: If ∀x, y ∈ [a,b] : | f (y)− f (x)| ≤C |y −x|. Then, for any partition:

N−1∑
k=0

| f (xk+1 − f (xk )| ≤ c
N−1∑
k=0

|xk+1 −xk | =C (b −a)

And thus f is of bounded variation and T V ( f ) ≤C (b −a)

Proposition 4.2. Let f : [a,b] →R and c ∈ (a,b). Then:

T V ( f ) = T V ( f |[a,c])+T V ( f |[c,b])

Proof. ∀a = x0 < x.. < xN = c,c = y0 < ... < yN ′ = b

N−1∑
k=0

| f (xk+1, xk )+
N ′−1∑
k=0

| f (yk+1)− f (yk )| ≤ T V ( f )
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Since combining them yields a partition of the whole interval.

Hence, T V ( f |[a,c])+T V ( f |[c,b]) ≤ T V ( f )

Conversely, ∀a = x0 < ...xN = b, letting i0 ∈ {0, ...N −1} such that xi0 ≤ c < xi0+1:

N−1∑
k=0

| f (xk+1)− f (xk )| =
i0−1∑
k=0

| f (xk+1)− f (xk )|+ | f (xi0+1)− f (xi0 )|+
N−1∑
k=i0

| f (xk+1)− f (xk )|

≤
i0−1∑
k=0

| f (xk+1)− f (xk )|+ | f (xi0+1)− f (c)|+ | f (c)− f (xi0 )|+
N−1∑
k=i0

| f (xk+1)− f (xk )|

≤ T V ( f |[a,c])+T V ( f |[c,b])

Theorem 4.3. A function f : [a,b] →R is of bounded variation iff it can be written as the differ-
ence as the difference of two increasing functions.

In particular, every function of bounded variation is differentiable a.e. in [a,b] and its derivative
is integrable over [a,b].

Proof. Assume f is of bounded variation. Then f (x) = ( f (x)+T V ( f |[a,x]))−T V ( f |[a,x]). We now
check they are both increasing. ∀x < y ∈ [a,b] :

T V ( f |[a,y])−T V ( f |[a,x]) = T V ( f |[x,y]) ≥ 0

and

( f (y)+T V ( f |[a,y]))−( f (x)+T V ( f |[a,x])) = ( f (y)− f (x))+T V ( f |[x,y]) >−| f (y)− f (x)|+T V ( f |[x,y]) ≥ 0

Thus, both functions are increasing.

Assume f = g −h where g and h are moving. Then g and −h are of bounded variations and so
their sum f is of bounded variation (see A5Q4).

4.2 Absolutely continuous functions

We say that a function f : [a,b] → R is absolutely continuous if ∀ε > 0 : ∃δε > 0 : such that for
all finite collections of disjoint open bounded intervals (a1,b1)...(aN ,bN ), if

∑N
k=1(bk −ak ) < δε,

then
∑N

k=1 | f (bk )− f (ak )| < ε.

Clearly, absolute continuity =⇒ uniform continuity by taking N = 1.

Example 4.3. Consider the following functions:
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1. Lipschitz functions are absolutely functions.

If ∀x, y ∈ [a,b] : | f (x)− f (y)| ≤ C |x − y |, then ∀ε > 0,∀(a1,b1)...(aN ,bN ) open bounded
disjoint intervals, if

∑N
k=1(bk −ak ) < δε = ε

C , then
∑N

k=1 | f (bk )− f (ak )| ≤C
∑N

k=1 |bk −ak | < ε

2. Cantor-Lebesgue function is not absolutely continuous.

Let C =⋂∞
k=1 Ck ,Ck =⋂2k

j=1[ak, j ,bk, j ] where [ak, j ,bk, j ] are disjoint intervals of length 3−k .

Then
∑2k

j=1(bk, j −ak, j = 2k

3k ) → 0 as k →∞.

On the other hand, by the definition of the Cantor-Lebesgue function φ, we have that∑2k

j=1 |φ(bk, j )−φ(ak, j )| =∑2k

j=1 2−k = 1k = 1 and thus φ is not absolutely continuous.

Theorem 4.4. Every absolutely continuous function f : [a,b] → R can be written as the differ-
ence of two increasing absolutely continuous functions. In particular, it is of bounded variation.

Proof. Multiple steps:

Step 1: Show that ∀ε> 0 : ∃δε > 0 : ∀(a1,b1)...(aN ,bN ) open bounded disjoint, if
∑N

k=1(bk −ak ) <
δε, then

∑N
k=1 T V ( f |[ak ,bk ]) < ε

Let ε> 0. Since f is absolutely continuous, ∃ : δε : ∀(a′
1,b′

1)...(a′
N ,b′

N ) disjoint open bounded, if∑N
k=1 b′

k −a′
k < δε then

∑N
k=1 f (b′

k )− f (a′
k ) < ε.

Then ∀(a1,b1)...(ak ,bk ) disjoint, open bounded ∀ak = xk,0 < xk,1... < xk,Nk = bk , if

N∑
k=1

Nk−1∑
j=1

xk, j+1 −xk, j =
N∑

k=1
bk −ak < δε

Then:

N∑
k=1

Nk−1∑
j=1

| f (xk, j+1)− f (xk, j )| < ε

By taking the supremum, we obtain
∑N

k=1 T V ( f |[ak ,bk ]) < ε.

Step 2: f is of bounded variation. We have:

T V ( f ) =
n∑

k=1=1
T V ( f |Ik=[a+ b−a

n (k−1),a+ b−a
n k])

Choosing n such that b−a
n < δ1, we obtain that T V ( f |Ik ) < 1 so T V ( f ) < n and is thus finite.

Step 3: Show that x → T V ( f |[a, x]) is absolutely continuous. Remark that |T V ( f |[a,bk ])−T V ( f |[a,a1])| =
T V ( f |[ak ,bk ]) so the result follows directly from Step 1.
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Write f (x) = ( f (x)+T V ( f |[a,x]))−T V ( f |[a,x]). We have that both functions are absolutely contin-
uous using that the sum of 2 absolutely continuous functions is absolutely continuous (A5Q4).
Moreover, we proved that the functions are increasing.

Theorem 4.5. Let f : [a,b] →R:

1. If f is absolutely continuous on [a,b], then ∀x ∈ [a,b]
∫

[a,x] f ′ = f (x)− f (a)

2. Conversely, if ∃g integrable over [a,b] such that ∀x ∈ [a,b] :
∫

[a,x] g = f (x)− f (a), then f is
absolutely continuous and f ′ = g almost everywhere in [a,b].

Proof. WLOG, we may assume that f is increasing. By continuity of f and x → ∫
(a,x) f ′, WLOG

we may assume that x < b. We let:

D 1
n

f (y) =


f (y+ 1
n )− f (y)

1
n

if y ∈ [a,b − 1
n ]g i vena < b − 1

n

0 if y ∈ b− 1
n

b

Then D 1
n

f (y) ≥ 0 and measurable.

Step 1: Show that limn→∞
∫

D 1
n

f = f (x)− f (a)

∫
[a,x]

D 1
n

f = n[
∫

[a,x]
[ f (y + 1

n
)− f (y)]d y]

= n[
∫

[a+ 1
n ,x+ 1

n ]
−

∫
[a,x]

f ]

provided x + 1
n < b

= n[
∫

[x,x+ 1
n ]

f −
∫

[a,a+ 1
n ]

f ]

provided a + 1
n < x

Moreover,
∫

[x,x+ 1
n ] f − f (x) = n(

∫
[x,x+ 1

n ] f (y)d y−∫
[x,x+ 1

n ] f (x)d y) = n(
∫

[x,x+ 1
n ] f (y)d y− f (x)∗m([x, x+

1
n ]))

= n
∫

[x,x+ 1
n ]

f (y)− f (x)d y

≤ n sup
y∈[x,x+ 1

n ]

| f (y)− f (x)|m([x, x + 1

n
]) = sup

y∈[x,x+ 1
n ]

| f (y)− f (x)|→ 0 as n →∞

Step 2: Show that limn→∞
∫

[a,x] D 1
n

f = ∫
[a,x] f ′
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Since f is differentiable a.e. in [a,b], we have D 1
n

f → f ′ pointwise a.e. in (a,b). By Egoroff’s

Theorem, ∀δ> 0 : ∃Fδ ⊆ (a,b) closed such that D 1
n

f → f ′ uniformly on Fδ and m((a,b)−Fδ) <
δ. Since (a,b)−Fδ is open,∃(ak ,bk )k∈N disjoint open bounded intervals such that (a,b)−Fδ =⋃

k∈N(ak ,bk )

Then, ∀N ∈N:

∫
⋃

k∈N(ak ,bk )
D 1

n
f =

N∑
k=1

∫
(ak ,bk )

D 1
n

f = m
N∑

k=1

∫
(ak ,bk )

(( f (x + 1

n
)− f (y))d y

provided x + 1
n < b

= n
N∑

k=1
(
∫

(bk ,bk+ 1
n )

f −
∫

(ak ,ak+ 1
n )

)

= n
N∑

k=1

∫
(0, 1

n )
f (bk + y)− f (ak + y)d y = n

∫
(0, 1

n )

n∑
k=1

( f (bk + y)− f (ak + y))

Remark that
∑N

k=1(bk+y)−(ak+y) =∑N
k=1(bk−ak ) = m(

⋃
k∈N(ak ,bk )) → m((a, x)−Fδ) as N →∞

by continuity of the measure.

Since m((a, x)−Fδ) < δ,∃Nδ ∈N : ∀N ≥ Nδ : ∀y ∈ (0, 1
n ) :

∑N
k=1((bk + y)− (ak + y)) < δ

Since f is absolutely continuous, ∀ε> 0 : ∃δε > 0 such that if
∑N

k=1((bk + y)− (ak + y)) < δε then∑N
k=1( f (bk + y)− f (ak + y)) < ε

Therefore, ∀N ≥ Nδε : ∀n ∈N : ∀y ∈ (0, 1
n ) :

∑N
k=1( f (bk+y)− f (ak+y)) < ε and so

∫⋃
k∈N(ak ,bk ) D 1

n
f <

n
∫

(0, 1
n ) ε= ε for n sufficiently large.

By continuity of integration, we have that limN→∞
∫⋃

k∈N(ak ,bk ) D 1
n

f = ∫
(a,x)−Fδ

D 1
n

f

Then by Fatou’s Lemma, since D 1
n

f ≥ 0 and D 1
n

f → f ′ a.e. pointwise, we have that
∫

(a,x)−Fδ
f ′ ≤

liminfn→∞
∫

(a,x)−Fδ
D 1

n
f .

Thus,

|
∫

(a,x)
(D 1

n
f − f ′)| =

∫
Fδ
|(D 1

n
f − f ′)|+

∫
(a,x)−Fδ

|(D 1
n

f − f ′)|

≤ m(Fδ)sup
Fδ

|(D 1
n

f − f ′)|+
∫

(a,x)−Fδ
D 1

n
f +

∫
(a,x)−Fδ

f ′

So

∀ε> 0 : limsup
n→∞

∫
(a,x)

|(D 1
n

f − f ′)| ≤ limsup
n→∞

∫
(a,x)−Fδ

D 1
n

f +
∫

(a,x)−Fδ
f ′ ≤ 2ε
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Letting ε→ 0, we obtain limn→∞ |∫(a,x) D 1
n

f −∫
(a,x) f ′| = 0

Proof of ii) Assume that ∃g integrable over [a,b] such that ∀x ∈ [a,b] f (x)− f (a) = ∫
(a,x) g . Let

ε> 0 and (a1,b1)...(aN ,bN ) be open, bounded, disjoint in (a,b):

N∑
k=1

| f (bk )− f (ak )| =
N∑

k=1
|
∫

(ak ,bk )
g | ≤

N∑
k=1

∫
(ak ,bk )

|g | =
∫
⋃

k∈N(ak ,bk )
|g |

Let g j = min(|g |, j ) for j ∈ N. Then, g j is measurable, g j+1 ≥ g j ≥ 0, lim j→∞ g J (x) = |g (x)| so
monotone convergence gives:

∫
⋃

k∈N(ak ,bk )
g j →

∫
⋃

k∈N(ak ,bk )
|g |

In particular, ∀ε> 0,∃gε ∈N:

∫
⋃

k∈N(ak ,bk )
|g | <

∫
⋃

k∈N(ak ,bk )
|g | <

∫
⋃

k∈N(ak ,bk )
g jε +

ε

2

Where |i nt |g |−∫
g jε | < ε

2

≤ jεm(
⋃

k∈N
(ak ,bk ))+ ε

2

Then, if
∑N

k=1(bk , ak ) < δε = ε
2 jε

=⇒ ∫⋃
k∈N(ak ,bk ) |g | < ε

2 + ε
2

This proves the absolute continuity of f . Then, from 1. it follows that
∫

(a,x) f ′ = f (x)− f (a) =∫
(a,x) g so

∫
(a,x)( f ′− g ) = 0 and so ∀x < y ∈ (a,b) :

∫
(x,y)( f ′− g ) = ∫

(a,y)( f ′− g )−∫
(a,x)( f ′− g ) = 0.

We will conclude that f ′ = g a.e. in (a,b) by applying:

Lemma 4.6. Let h integrable over [a,b]. Then h = 0 a.e. in [a,b] ⇐⇒ ∀x < y ∈ (a,b) :
∫

x,y h = 0

Proof. =⇒ is trivial.

⇐= Assume that ∀x < y ∈ [a,b]
∫

(x,y) h = 0. Since every open set in (a,b) can be written as
a countable union of disjoint intervals, by continuity of integration we obtain that ∀O ⊆ (a,b)
open

∫
O h = 0.

Again, by continuity of integration, it follows that
∫

G h = 0 for all Gδ set G ⊆ (a,b).

For every measurable A ⊆ (a,b), we have that A = G −N where G is a Gδ set and m(N ) = 0 so∫
a h = ∫

G h −∫
N h = 0 since m(N ) = 0. Then, we conclude, as in Q6 of Assignment 3

Corollary 4.7. Let f : [a,b] → R be monotone. Then, f is absolutely continuous on [a,b] ⇐⇒∫
(a,b) f ′ = f (b)− f (a).

35



Proof. =⇒ Follows from the theorem.

⇐= Assume
∫

(a,b) f ′ = f (b)− f (a). Let x ∈ [a,b] and WLOG assume that f is increasing. Then,∫
(a,x) f ′ ≤ f (x)− f (a) and

∫
(x,b) f ′ ≤ f (b)− f (x).

It follows that f (x)− f (a) = f (x)− f (b)+ f (b)− f (a) ≤ ∫
(a,b) f ′− ∫

(x,b) f ′ ≤ ∫
(a,x) f ′ so

∫
(a,x) f ′ =

f (x)− f (a) which gives that f is absolutely continuous on [a,b].

Corollary 4.8. Every function of bounded variation f : [a,b] → R can be written as f = fabs +
fsi ng where fabs is absolutely continuous and f ′

si ng = 0 a.e. in (a,b) (singular part).

Proof. Define fabs(x) = ∫
(a,x) f ′ and fsi ng = f − fabs . Then fabs is absolutely continuous and

f ′
si ng = f ′− f ′ = 0.

5 Lebesgue measure and integral in Rd ,d ≥ 2

We define the outer measure of A ⊆Rd as:

m∗(A) = inf

{ ∞∑
k=1

vol (Rk ) : Rk = (ak,1,bk,1 × ...× (ak,d bk,d )) open bounded rectangles such thatA ⊆ ⋃
k∈N

Rk

}

where vol (Rk ) =Πd
i=1(bk,i −ak,i )

Proposition 5.1. Every open set O ⊆Rd can be written as O =⋃
k∈NQk where Qk = ck +lk (−1

2 , 1
2 )

(where ck ∈ Rd is the center of the cube and we add 1
2 lk in every direction) are disjoint, open,

bounded cubes.

Take a grid of size 1 and fit in all possible cubes in O. Then, repeat with size 1
2 to get more cubes

to cover O and repeat infinitely many time.

The process works since for every point x in O, we can find a cube that contains x and that is
contained in O so eventually by this process we capture that point.

Proof. Let O ⊆ Rd be open. For every k ∈N, let Ck be the set of all closed cubes with vertices in
2−kZ (grid).

Let C1(O) = {Q ∈C1 : Q ⊆O} and O1 =⋃
Q∈C1(O) Q

By induction, construct Ck (O) = {Q ∈Ck : Q ⊆O ∧Q 6⊆⋃k=1
j=1 O j } and Ok =⋃

Q∈Ck (O) Q.

Then, we show that O =⋃
k∈NOk =⋃

k∈N
⋃

Q∈Ck (O) Q.

Since ∀Q ∈Ck (O) : Q ⊆O, we have
⋃

k∈NOk ⊆O.

Conversely, let x ∈ O. Then, since 2−k → 0 as f → ∞ and O is open, ∃k0 ∈ N and a Q0 ∈ Ck0

such that x ∈ Q0 and Q0 ⊆ O. From our construction, we must have that Q0 ⊆ ⋃k0
k=1 Ok (either

included at stage k0 or added at a previous stage). This proves that x ∈⋃
k∈NOk .
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5.1 Fubini and Tonelli’s theorems

Let d1 and d2 ∈N be such that d1 +d2 = d .

For every E ⊆ Rd and (x0, y0) ∈ Rd1 ×Rd−2 = Rd , we denote Ex0 = {y ∈ Rd2 : (x0, y) ∈ E } and Ey0 =
{x ∈Rd1 : (x, y0) ∈ E }.

∀ f : E →Rwe denote fx0 : Ex0 →R, y → f (x0, y) and fy0 : Ey0 →R, x → f (x, y0).

Remark. We must be conscious of the following:

1. E measurable does not imply Ex ,Ey measurable. Let E = E1 × {0}d−1 where E1 is not mea-
surable in [0,1]. Then, m∗(E) ≤ vol ((−ε,1+ ε)× (ε,ε)d−1) = (1+2ε)2εd−1 → 0 so E is mea-
surable (m(E) = 0).

2. It is not always true that:

∫
Rd1

(
∫
Rd2

f (x, y)d y)d x =
∫
Rd2

(
∫
Rd1

f (x, y)d x)d y

Even if these integrals are well-defined. In fact, consider:

∫
[0,1]

(
∫

[0,1]

x2 − y2

(x2 + y2)2
d y)d x =

∫
[0,1][ y

x2+y2 ]1
0d x

=
∫

[0,1]

1

x2 +1
d x = [ar ct an(x)]1

0 =
π

4

Changing the order of integration gives us the negation of the previous result =⇒ = −π
4

and thus they are not equal.

Theorem 5.2. Fubini’s Theorem (version in Rd ): Let f :Rd →R be integrable over Rd . Then:

1. For a.e. y ∈Rd2 , fy is integrable over Rd1

2. y → ∫
Rd1 fy is integrable over Rd2 .

3.
∫
Rd2 (

∫
Rd1 f (x, y)d x)d y = ∫

Rd f

Remark. The roles of x and y in Fubini’s Theorem can be inverted so that in particular

∫
Rd1

(
∫
Rd2

f (x, y)d y)d x =
∫
Rd

f

Proof. Let F = { f :Rd →R integrable such that 1,2,3 hold}

Step 1: ∀α1..αn ∈R, f1... fn ∈ F =⇒ α1 f1 + ...αn fn ∈ F , from the linearity of the integral.

Step 2: Let ( fn)n∈N be a sequence of functions in F such that:

1. a) [∀n ∈N fn ≤ fn+1] or [∀n ∈N fn ≥ fn+1]

2. a) ∀(x, y) ∈Rd : limn→∞ fn(x, y) = f (x, y) (not only a.e.) for some function f :Rd →R
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Then, f ∈ F . WLOG we may assume that fn+1 ≥ fn (otherwise consider − fn) and that fn ≥ 0
(otherwise just consider fn − f1).

Since fn ∈ F , we have that 1,2,3 hold. From 1. and 2.a), we obtain that for a.e. y ∈ Rd2 , fy is
measurable.

By the MCT, we obtain limn→∞
∫
Rd1 fn,y →

∫
Rd1 fy . By 2, it follows that y → ∫

Rd1 f is measurable.

Once again, by the MCT, we obtain that limn→∞
∫
Rd2

∫
Rd1 fn,y

= ∫
Rd2

∫
Rd1 fy

On the other hand, the MCT also gives that limn→∞
∫
Rd fn = ∫

Rd f . Passing to the limit in 3., we
obtain 3.

∫
Rd2

∫
Rd1 fy =

∫
Rd f .

Since f is integrable in Rd , it follows that
∫
Rd2

∫
Rd1 fy < ∞ i.e y → ∫

Rd1 fy is integrable. Hence∫
Rd2 fy <∞ for a.e. y ∈Rd2 .

Step 3: ∀E ⊆Rd measurable.

MISSING REST OF PROOF

Theorem 5.3. Tonelli’s Theorem: Let f :Rd → [0,∞] be measurable, then:

1. For a.e. y ∈Rd2 , fY is increasing measurable on Rd2

2. y → ∫
Rd1 fx is nonnegative measurable on Rd1

3.
∫
Rd2

∫
Rd1

fy =
∫
Rd f

Remark. Once again, the role of x and y can be exchanged.

Proof. Let,

fn(x) =
{

min( f (x),n) if f (x) ≤ n

0 if |x| ≥ n

∀n ∈N. Since fn is measurable and 0 ≤ fn ≤ nχB(0,n) so fn is integrable, we can apply Fubini’s
Theorem which gives:

1. For a.e. y ∈Rd , ( fn)y ) is integrable over Rd1

2. y → ∫
Rd1 ( fn)y is integrable over Rd2

3.
∫
Rd2

∫
Rd1 ( fn)y =

∫
Rd fn

Since ( fn)y → fy pointwise in Rd , from 1’ we obtain f is mbl for a.e. y ∈Rd . Since fn+1 ≥ fn ≥ 0,
the MCT gives limn→∞

∫
Rd1 ( fn)y =

∫
Rd1 fy ) =⇒ 1.

From 2’, it follows that y → ∫
Rd1 f is measurable and thus we have 2.

For 3, by the MCT, it follows that:

lim
n→∞

∫
Rd2

∫
Rd1

( fn)y =
∫
Rd2

∫
Rd1

f
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and

lim
n→∞

∫
Rd

fn =
∫
Rd

f

then passing to the limit of 3’, we obtain 3

Corollary 5.4. let E ⊆Rd be a measurable set. Then:

1. For a.e. y ∈Rd2 , Ey is measurable

2. y → m(Ey ) is measurable.

3. m(E) = ∫
Rd2 m(Ey )d y

Proof. Apply Tonelli’s Theorem with f =χE . Then:

1. ’ For a.e. y ∈ Rd , (χE )y is measurable

2. ’ y → ∫
Rd1 (χE )y is measurable.

3. ’
∫
Rd2

∫
Rd1 (χE )y

∫
RχE = m(E)

Since (χE )y = χEy and Ey = χ−1
Ey

({1}) = χ−1
Ey

([−∞,1]∩χ−1
Ey

([1,∞]) we obtain that Ey is measurable

for a.e. y ∈Rd2 . This completes 1.

For the other 2, it follows from 2’ and 3’ by remarking that m(Ey ) = ∫
Rd1 χE .

Corollary 5.5. General version of Tonelli’s Theorem: Let E ⊆ Rd be measurable and f : E →
[0,∞] be measurable. Then:

1. For a.e. y ∈Rd2 , f is nonnegative measurable on Ey .

2. y → ∫
Ey

fy is nonnegative measurable on Rd2

3.
∫
Rd2

∫
Ey

fy =
∫

E f

Proof. Apply Tonelli’s Theorem to f̃ (x) = f (x) if x ∈ E , 0 otherwise. This new function is mea-
surable since E and f are measurable. Then:

1. ’ For a.e. y ∈Rd2 , f̃y is nonnegative measurable on Rd1

2. ’ y → ∫
Rd2 f̃y is nonnegative measurable on Rd2

3. ’
∫
Rd2

∫
Rd1 f̃y =

∫
Rd f

Since fy = f̃y |Ey and f̃y and Ey are measurable, we obtain that fy is measurable on Ey for a.e.

y ∈Rd2 . Then, 2 and 3 follow from 2’ and 3’ by remarking that
∫

EY
fY = ∫

Rd1 f̃y .
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Corollary 5.6. General version of Fubini’s Theorem: Let E ⊆ Rd be measurable and f : E →
[−∞,∞] be integrable. Then:

1. For a.e. y ∈Rd2 , fy is integrable on Ey .

2. y → ∫
Ey

fy is integrable on Rd2

3.
∫
Rd2

∫
Ey

fy =
∫

E f

Proof. Apply Fubini’s Theorem to f̃ (x) = f (x) if x ∈ E , 0 otherwise.

Theorem 5.7. Let E1 and E2 be measurable sets on Rd1 and Rd2 respectively. Then, E1 ×E2 is
measurable and

m(E1 ×E2) =
{

m(E1)m(E2) if m(E1) 6= 0,m(E2) 6= 0

0 if either has measure 0

Proof. Step 1: Show that ∀E1,E2 ⊆Rd :

m∗(E1 ×E2) ≤
{

m∗(E1)m∗(E2) if both have nonzero outer measure

if one has zero outer measure

WLOG, we may assume that m∗(E1) ≤ m∗(E2).

Case m∗(E2) =∞ and m∗(E1) > 0. In this case, m∗(E1)m∗(E2) =∞ so there is nothing to prove.

Case m∗(E2) < ∞ and m∗(E1) > 0: Let ε > 0 and (Rk )k∈N and (R ′
k )k∈N be open bounded rect-

angles that cover E1 and E2 respectively with
∑∞

k=1 vol (Rk ) < m∗(E1)+ ε and
∑∞

k=1 vol (R ′
k ) <

m∗(E2)+ε.

Then, E1 ×E2 ⊆ (
⋃

k∈NRk )× (
⋃

j∈NR ′
j ) =⋃

k, j∈NRk ×R ′
j . Furthermore, Rk ×R ′

j are open bounded
rectangles and:

m∗(E1 ×E2) ≤
∞∑

j ,k=1
m∗(Rk ×R ′

j ) =
∞∑

k, j=1
vol (Rk ×R ′

j ) =
∞∑

k, j=1
vol (Rk )vol (R ′

j )

=
∞∑

k=1
vol (Rk )

∞∑
j=1

vol (R ′
j ) < (m∗(E1)+ε)(m∗(E2)+ε)

Case m∗(E1) = 0: Write E2 =⋃
k∈NE2∩[−k,k]d2 . Then, E1×E2 ⊆⋃

k∈NE1×(E2∩[−k,k]d2 ). Then,
from the above case:

m∗(E1 × (E2 ∩ [−k,k]d2 )) = m∗(E1)m∗(E2 ∩ [−k,k]) = 0

since the second term is finite and the first is 0. Thus, by subadditivity, it follows that m∗(E1 ×
E2) = 0.
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Step 2: Conclusion. Since E1 and E2 are measurable, ∃G1,G2 Gδ sets such that E1 ⊆G1,E2 ⊆G2

and m(G1 −E1) = m(G −E2) = 0. Then, G1 = ⋂
n∈NOn ,G2 = ⋂

n∈NO′
n and G1 ×G2 = ⋂

n∈NOn ×⋂
k∈NO′

k =⋂
k,n∈NOn ×O′

k .

The sets On×O′
k are open as products of open sets so G1×G2 is a Gδ set inRd . Moreover, E1×E2 ⊆

G1×G2 since E1 ⊆G1 and E2 ⊆G2 and m∗((G1×G2)−(E1×E2)) = m∗([G1×(G2−E2)]∪[G2×(G1−
E1)]) ≤ m∗(G1 × (G2 −E2))+m∗(G2 × (G1 −E1)) ≤ m∗(G1)m∗(G2 −E2)+m∗(G2)m∗(G1 −E1) = 0.

Since E1×E2 is measurable. Then, by the first corollary of Tonneli’s Theorem, given that m(E1×
E2) = ∫

E2
m(E1) = m(E1)m(E2) if both are nonzero, 0 otherwise.

Since (E1 ×E2)y = E1 if y ∈ E2 and ; otherwise.

Corollary 5.8. Let E1 ⊆ Rd1 ,E2 ⊆ Rd2 be measurable and f : E1 → R be measurable. Then, f̃ :
E1 ×E2 →R, f̃ (x, y) = f (x) is measurable.

Proof. ∀c ∈R : f̃ −1([−∞,c)) = f −1([−∞,c])×E2 where both are measurable. Thus, we can con-
clude that f̃ −1([−∞,c)) is measurable.

Theorem 5.9. Assume that d1 = d − 1 and d2 = 1. Let E1 ⊆ Rd−1 be measurable and f : E1 →
[0,∞]. Then, f is measurable iff the set A = {(x, y) ∈ E1 ×R : 0 < x < f (x)} is measurable. More-
over, if f is measurable, then m(A) = ∫

E1
f .

Proof. Assume that f is measurable. Write A = {(x, y) ∈ E1 × (0,∞] : f (x, y) = y − f (x) < 0} =
f̃ −1([−∞,0)) where f̃ : E1 × (0,∞).

From the previous corollary, (x, y) → f (x) and (x, y) → y are measurable on E1 × (0,∞) and so f̃
is measurable on E1 × (0,∞). Therefore, A is measurable.

Assume A is measurable. Then by Corollary 1 of Tonelli’s Theorem, x → m(Ax) = 0 if x 6∈ E1 or
f (x) otherwise. Then, G|E1 = f is measurable. Furthermore, m(A) = ∫

Rd1 m(Ax)d x = ∫
Rd1 g =∫

E1
f

6 Hausdorff measure

Def. For every s > 0 and A ⊆Rd , we define the s-dimensional Hausdorff exterior measure of A
as the number:

m∗
s (A) = lim

δ→0
Hδ

s (A)

where

Hδ
s (A) = inf

{ ∞∑
k=1

di am(Ak )s : A ⊆ ⋃
k∈N

Ak ,di am(Ak ) < δ

}

and
di am(Ak ) = sup

{|x − y | : x, y ∈ Ak
}
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Theorem 6.1. ∀A ⊆ Rd : ∃!dA ∈ [0,d ] such that ∀s < dA : m∗
s (A) =∞ and ∀s > dAm∗

s (A) = 0. We
call dA the Hausdorff dimension of A and we denote dA = di mH (A).

Proof. We show that ∀α<β ∈ [0,d ]:

1. m∗
α(A) <∞ =⇒ m∗

β
(A) = 0

2. m∗
β

(A) > 0 =⇒ m∗
α(A) =∞

It suffices to prove 1. since 2. is the contrapositive.

Assume α < β and m∗(A) < ∞. Let (Ak )k∈N be an appropriate cover. Simply observe that
(di am Ak )β = (di am Ak )β−α(di am Ak )α < δβ−α(di am Ak )α.

Hence Hδ
β

(A) ≤ δβ−αH s
α(A) → 0 as δ→ 0.

Let dα = sup{α ∈ [0,d ] : m∗
α(A) =∞} or 0 if the set is empty. Then 1. and 2. implies the required

properties for dα.

Remark. 1. Like for the Lebesgue’s exterior measure, we can prove monotonicity, subaddi-
tivity and measurability of Borel sets, etc. and construct the associated integral.

2. In case s = d , it can be shown that m∗
d (A) = 2d m∗(A) since 2d = m∗(B d ) where B d is the

unit ball in Rd .

3. In case s = 0, it can be shown that m∗
0 (A) = |A| (i.e. the counting measure).

4. It can be shown that for every Lipschitz function f : [0,1] →Rd that is injective except for
a finite number of points, the curve C = f ([0,1]) is of Hausdorff dimension 1.

5. It can be shown that the Cantor set has Hausdorff dimension ln2
ln3 .

Proof. Half proof of 5.
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